Shear heating of a fluid-saturated slip-weakening dilatant fault zone: 2. Quasi-drained regime
نویسندگان
چکیده
[1] This paper analyzes slip on a fluid-infiltrated dilatant fault for imposed (tectonic) strain rates much slower than the rate of fluid exchange between the gouge zone and the surroundings and for exchange of heat slower than of fluid, typical of interseismic or most laboratory loading conditions. The limiting solution, corresponding to the infinitely rapid drainage rate, developed in the companion paper by Garagash and Rudnicki [2003], yielded unbounded slip acceleration for sufficiently large slip weakening of the fault. Analysis for rapid but finite drainage rates (quasi-drained condition) reveals two types of possible instability. The first is inertial instability (a seismic event) characterized by an unbounded slip rate and attributed to the destabilizing effects of shear heating and fault slip weakening. The second corresponds to loss of uniqueness and arises from the small pressure increase caused by shear heating for rapid but finite rates of drainage. This instability emerges for even small amounts of thermomechanical coupling and a large range of dilatancy and slip weakening. Its resolution probably requires a more elaborate frictional description (e.g., rate and state), but within the slip-weakening framework here, leads to either slip arrest or inertial instability. The response is always unstable (in one of these two ways) for sufficiently large thermal coupling or initial stress regardless of the amount of slip weakening and dilatancy. The counterintuitive stabilizing effect of increased slip weakening or decreased dilatancy, similar to the effect in the companion paper, also occurs for nearly drained slip.
منابع مشابه
Shear heating of a fluid-saturated slip-weakening dilatant fault zone 1. Limiting regimes
[1] The one-dimensional model of Rudnicki and Chen [1988] for a slip-weakening dilating fault is extended to include shear heating. Because inertia is not included, instability (a seismic event) corresponds to an unbounded slip rate. Shear heating tends to increase pore pressure and decrease the effective compressive stress and the resistance to slip and consequently tends to promote instabilit...
متن کاملHarvard University -- Solid Earth Physics Seminar Thermal pressurization of pore fluid - mechanism for seismic and aseismic self-healing fault slip
There are several lines of evidence that suggest that thermal pressurization (TP) of pore fluid within a low-permeability fault core may play the key role in the development of earthquake slip. To elucidate effects of TP on spontaneous fault slip, I consider solutions for a steadily propagating slip pulse on a fault with a constant sliding friction, the level of which may reflect other thermall...
متن کاملOn the Stability of Dilatant Hardening for Saturated Rock Masses
Fissured rock masses tend to dilate as they are deformed inelastically toward failure. When the rock is fluid saturated and the time scale does not allow drainage, suctions are induced in the pore fluid, and by the effective stress principle the rock is dilatantly hardened over the resistance that it would show to a corresponding increment of drained deformation. This paper considers a compress...
متن کاملInfluence of dilatancy on the frictional constitutive behavior of a saturated fault zone under a variety of drainage conditions
[1] We use numerical simulations to investigate how fault zone dilatancy and pore fluid decompression influence fault strength and friction constitutive behavior. Dilatant hardening can change the frictional response and the effective critical stiffness, Kcr, which determines the transition from stable to unstable sliding in velocity weakening fault zones. We study the frictional shear strength...
متن کاملHeating and weakening of faults during earthquake slip
[1] Field observations of mature crustal faults suggest that slip in individual events occurs primarily within a thin shear zone, <1–5 mm, within a finely granulated, ultracataclastic fault core. Relevant weakening processes in large crustal events are therefore suggested to be thermal, and to involve the following: (1) thermal pressurization of pore fluid within and adjacent to the deforming f...
متن کامل